Crystal structures of the mitochondrial deoxyribonucleotidase in complex with two specific inhibitors.

نویسندگان

  • Agnes Rinaldo-Matthis
  • Chiara Rampazzo
  • Jan Balzarini
  • Peter Reichard
  • Vera Bianchi
  • Pär Nordlund
چکیده

Monophosphate nucleotidases are enzymes that dephosphorylate nucleotides to their corresponding nucleosides. They play potentially important roles in controlling the activation of nucleotide-based drugs targeted against viral infections or cancer cells. The human mitochondrial deoxyribonucleotidase (dNT-2) dephosphorylates thymidine and deoxyuridine monophosphates. We describe the high resolution structures of the dNT-2 enzyme in complex with two potent nucleoside phosphonate inhibitors, (S)-1-[2'-deoxy-3',5'-O-(1-phosphono) benzylidene-beta-d-threo-pentofuranosyl]thymine (DPB-T) at 1.6-A resolution and (+/-)-1-trans-(2-phosphonomethoxycyclopentyl)uracil (PMcP-U) at 1.4-A resolution. The mixed competitive inhibitor DPB-T and the competitive inhibitor PMcP-U both bind in the active site of dNT-2 but in distinctly different binding modes, explaining their different kinetics of inhibition. The pyrimidine part of the inhibitors binds with very similar hydrogen bond interactions to the protein but with their phosphonate moieties in different binding sites compared with each other and to the previously determined position of phosphate bound to dNT-2. Together, these phosphate/phosphonate binding sites describe what might constitute a functionally relevant phosphate entrance tunnel to the active site. The structures of the inhibitors in complex with dNT-2, being the first such complexes of any nucleotidase, might provide important information for the design of more specific inhibitors to control the activation of nucleotide-based drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structures of human and murine deoxyribonucleotidases: insights into recognition of substrates and nucleotide analogues.

Cytosolic 5'(3')-deoxyribonucleotidase (cdN) and mitochondrial 5'(3')-deoxyribonucleotidase (mdN) catalyze the dephosphorylation of deoxyribonucleoside monophosphates and regulate dTTP formation in cytosol and mitochondria, protecting DNA replication from imbalanced precursor pools. They can also interfere with the phosphorylation-dependent activation of nucleoside analogues used in anticancer ...

متن کامل

Toxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach

Arsenic exposure mainly through food and water has been shown to be associated with increased incidence of numerous cancers and non-cancer harmful health. It is also used in cancer chemotherapy and treatment of several cancer types due to its apoptogenic effects in the various cancer and normal cell lines. We have already reported that liver is the storage site and important target organ in As ...

متن کامل

Toxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach

Arsenic exposure mainly through food and water has been shown to be associated with increased incidence of numerous cancers and non-cancer harmful health. It is also used in cancer chemotherapy and treatment of several cancer types due to its apoptogenic effects in the various cancer and normal cell lines. We have already reported that liver is the storage site and important target organ in As ...

متن کامل

ANTIBODY TO MITOCHONDRIAL COMPLEX-I IN SOME PATIENTS WITH MULTIPLE SCLEROSIS

When pooled immunoglobulin G (IgG) from patients with multiple sclerosis (MS) was used to probe a human fetal spinal cord λgt 11 cDNA library, the IgG was found to bind to a predicted epitope of human mitochondrial ND4 sequence. To investigate the involvement of the ND4 as an autoantigen in MS, we determined the presence of specific antibody in the serum of MS patients and serum samples of...

متن کامل

Long-term, high-dose aspirin therapy increases the specific activity of complex III of mitochondrial respiratory chain in the kidney of diabetic rats

Introduction: One of the main mechanisms by which diabetic complications occur is an alteration of the structure and function of proteins due to hyperglycemia. Aspirin (ASA) affects cellular pathways through different mechanisms, including glycation inhibition and antioxidant activity. The aim of the present study, as a follow up to our previous one, is to investigate the effect of long-term, h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 2004